Frequency-Dependent Altered Functional Connections of Default Mode Network in Alzheimer’s Disease

نویسندگان

  • Youjun Li
  • Hongxiang Yao
  • Pan Lin
  • Liang Zheng
  • Chenxi Li
  • Bo Zhou
  • Pan Wang
  • Zengqiang Zhang
  • Luning Wang
  • Ningyu An
  • Jue Wang
  • Xi Zhang
چکیده

Alzheimer's disease (AD) is a neurodegenerative disorder associated with the progressive dysfunction of cognitive ability. Previous research has indicated that the default mode network (DMN) is closely related to cognition and is impaired in Alzheimer's disease. Because recent studies have shown that different frequency bands represent specific physiological functions, DMN functional connectivity studies of the different frequency bands based on resting state fMRI (RS-fMRI) data may provide new insight into AD pathophysiology. In this study, we explored the functional connectivity based on well-defined DMN regions of interest (ROIs) from the five frequency bands: slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz), slow-2 (0.198-0.25 Hzs) and standard low-frequency oscillations (LFO) (0.01-0.08 Hz). We found that the altered functional connectivity patterns are mainly in the frequency band of slow-5 and slow-4 and that the decreased connections are long distance, but some relatively short connections are increased. In addition, the altered functional connections of the DMN in AD are frequency dependent and differ between the slow-5 and slow-4 bands. Mini-Mental State Examination scores were significantly correlated with the altered functional connectivity patterns in the slow-5 and slow-4 bands. These results indicate that frequency-dependent functional connectivity changes might provide potential biomarkers for AD pathophysiology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verbal fluency and intrinsic brain activity in Alzheimer’s disease

Growing evidence from task-based functional magnetic resonance imaging (fMRI) studies consistently indicates network abnormalities in Alzheimer’s disease (AD) patients (1,2). While a picture is emerging on how these changes affect cognition and behavior at various stages of the disease, there is less understanding of the changes in functional connectivity between spatially distant brain areas i...

متن کامل

Comments on “Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression”

Neuroimaging evidence of disconnection syndrome of Alzheimer’s disease (AD) is extremely fascinating. In the study by Brier et al.,[1] they examined resting-state functional-connectivity magnetic resonance imaging (rs-fcMRI) in 5 functionally defined brain networks: default mode network (DMN), executive control network (CON), salience network (SAL), dorsal attention network (DAN), and sensory-m...

متن کامل

Integration of the Existed Knowledge on DMN: A Critical Review Study

The default-mode network (DMN) is one of the human brain’s networks activated in resting and self-referential thinking states. The nature of this network and its normal or abnormal changes has been the subject of various studies. The aim of this study was to systematical review and integrating the findings of that studies focused on the relationship of DMN with mental disorders and aging-induce...

متن کامل

Distinct Interactions between Fronto-Parietal and Default Mode Networks in Impaired Consciousness

Existing evidence suggests that the default-mode network (DMN) and fronto-pariatal network (FPN) play an important role in altered states of consciousness. However, the brain mechanisms underlying impaired consciousness and the specific network interactions involved are not well understood. We studied the topological properties of brain functional networks using resting-state functional MRI dat...

متن کامل

Connectopathy in ageing and dementia

Connectivity in the brain is dynamic. From development through normal ageing or as a result of pathological processes, structural and functional connectivity are in a constantly changing state. Some changes may occur rapidly as a consequence of learning, for example, but others may take years or decades. Our ability to witness and measure changes in structural connectivity relies on the diffusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017